skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Xueling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra‐low‐frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground‐based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF‐modulated whistler‐mode waves. We observed peak‐to‐peak dTEC amplitudes reaching 0.5 TECU (1 TECU is equal to electrons/) with modulations spanning scales of 5–100 km. The cross‐correlation between our modeled and observed dTEC reached 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler‐mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high‐latitude dTEC generation from magnetospheric wave‐induced precipitation, addressing a significant gap in current physics‐based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere‐ionosphere coupling via ULF waves. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract The mid‐latitude ionospheric trough (MLIT), an anomaly in the ionosphere's F layer caused by various mechanisms, affects radio wave propagation. In this study, we investigated the morphology and oscillations of the MLIT using global Global Positioning System total electron content map data between 1 January 2018, and 31 December 2020. The MLIT position varies longitudinally, reaching its farthest equatorward at 60W and its farthest poleward at 30E. The MLIT occurrence rates peak during the winter and equinoxes and dip in summer, while seasonal variations in MLIT position vary across longitude bands. Heightened geomagnetic activities, quantified by the SME6 index, promote MLIT occurrence, especially during pre‐midnight hours in summer and equinoxes, and shift the MLIT equatorward, particularly during midnight and post‐midnight hours. The MLIT position shows clear local time variation, with a gradual decrease before midnight, stabilization afterward, and a minor resurgence around dawn. Wavelet analysis reveals three distinct periodic components in the MLIT position: 27, 13.5, and 9, with the 27‐day period being the most persistent. Cross‐wavelet and wavelet coherence analyses suggest that solar wind (SW) velocity variations precede changes in the MLIT position. The main factors responsible for the equatorward movement of MLIT are the electric fields in high‐speed SW that enhance the ionospheric convection pattern, and the intensified geomagnetic activities induced by interplanetary shocks. 
    more » « less
  3. Winds in the nighttime upper thermosphere are often observed to mimic the ionospheric plasma convection at polar latitudes, and whether the same is true for the daytime winds remains unclear. The dayside sector is subject to large temperature gradient set up by solar irradiance and it also contains the cusp, which is a hotspot of Poynting flux and a region with the strongest soft particle precipitation. We examine daytime winds using a Scanning Doppler Imager (SDI) located at the South Pole, and investigate their distribution under steadily positive and negative IMF Byconditions. The results show that daytime winds exhibit significant differences from the plasma convection. Under negative IMF Byconditions, winds flow in the same direction as the plasma zonally, but have a meridional component that is strongest in the auroral zone. As a result, winds are more poleward-directed than the plasma convection within the auroral zone, and more westward-directed in the polar cap. Under positive IMF Byconditions, winds can flow zonally against the plasma in certain regions. For instance, they flow westward in the polar cap despite the eastward plasma convection there, forming a large angle relative to the plasma convection. The results indicate that ion drag may not be the most dominant force for daytime winds. Although the importance of various forcing terms cannot be resolved with the utilized dataset, we speculate that the pressure gradient force in the presence of cusp heating serves as one important contributor. 
    more » « less
  4. The dynamics of Earth’s magnetopause, driven by several different external/internal physical processes, plays a major role in the geospace energy budget. Given magnetopause motion couples across many space plasma regions, numerous forms of observations may provide valuable information in understanding these dynamics and their impacts.In-situmulti-point spacecraft measurements measure the local plasma environment, dynamics and processes; with upcoming swarms providing the possibility of improved spatiotemporal reconstruction of dynamical phenomena, and multi-mission conjunctions advancing understanding of the “mesoscale” coupling across the geospace “system of systems.” Soft X-ray imaging of the magnetopause should enable boundary motion to be directly remote sensed for the first time. Indirect remote sensing capabilities might be enabled through the field-aligned currents associated with disturbances to the magnetopause; by harnessing data from satellite mega-constellations in low-Earth orbit, and taking advantage of upgraded auroral imaging and ionospheric radar technology. Finally, increased numbers of closely-spaced ground magnetometers in both hemispheres may help discriminate between high-latitude processes in what has previously been a “zone of confusion.” Bringing together these multiple modes of observations for studying magnetopause dynamics is crucial. These may also be aided by advanced data processing techniques, such as physics-based inversions and machine learning methods, along with comparisons to increasingly sophisticated geospace assimilative models and simulations. 
    more » « less
  5. The dynamics of Earth’s magnetopause, driven by several different external/internal physical processes, plays a major role in the geospace energy budget. Given magnetopause motion couples across many space plasma regions, numerous forms of observations may provide valuable information in understanding these dynamics and their impacts. In-situ multi-point spacecraft measurements measure the local plasma environment, dynamics and processes; with upcoming swarms providing the possibility of improved spatiotemporal reconstruction of dynamical phenomena, and multi-mission conjunctions advancing understanding of the “mesoscale” coupling across the geospace “system of systems.” Soft X-ray imaging of the magnetopause should enable boundary motion to be directly remote sensed for the first time. Indirect remote sensing capabilities might be enabled through the field-aligned currents associated with disturbances to the magnetopause; by harnessing data from satellite mega-constellations in low-Earth orbit, and taking advantage of upgraded auroral imaging and ionospheric radar technology. Finally, increased numbers of closely-spaced ground magnetometers in both hemispheres may help discriminate between high-latitude processes in what has previously been a “zone of confusion.” Bringing together these multiple modes of observations for studying magnetopause dynamics is crucial. These may also be aided by advanced data processing techniques, such as physics-based inversions and machine learning methods, along with comparisons to increasingly sophisticated geospace assimilative models and simulations. 
    more » « less
  6. Abstract Flux transfer events (FTEs) are a type of magnetospheric phenomena that exhibit distinctive observational signatures from the in situ spacecraft measurements. They are generally believed to possess a magnetic field configuration of a magnetic flux rope and formed through magnetic reconnection at the dayside magnetopause, sometimes accompanied with enhanced plasma convection in the ionosphere. We examine two FTE intervals under the condition of southward interplanetary magnetic field (IMF) with a dawn‐dusk component. We apply the Grad‐Shafranov (GS) reconstruction method to the in situ measurements by the Magnetospheric Multiscale (MMS) spacecraft to derive the magnetic flux contents associated with the FTE flux ropes. In particular, given a cylindrical magnetic flux rope configuration derived from the GS reconstruction, the magnetic flux content can be characterized by both the toroidal (axial) and poloidal fluxes. We then estimate the amount of magnetic flux (i.e., the reconnection flux) encompassed by the area “opened” in the ionosphere, based on the ground‐based Super Dual Auroral Radar Network (SuperDARN) observations. We find that for event 1, the FTE flux rope is oriented in the approximate dawn‐dusk direction, and the amount of its total poloidal magnetic flux falls within the range of the corresponding reconnection flux. For event 2, the FTE flux rope is oriented in the north‐south direction. Both the FTE flux and the reconnection flux have greater uncertainty. We provide a detailed description about a formation scenario of sequential magnetic reconnection between adjacent field lines based on the FTE flux rope configurations from our results. 
    more » « less
  7. Abstract Submarine cables have experienced problems during extreme geomagnetic disturbances because of geomagnetically induced voltages adding or subtracting from the power feed to the repeaters. This is still a concern for modern fiber‐optic cables because they contain a copper conductor to carry power to the repeaters. This paper provides a new examination of geomagnetic induction in submarine cables and makes calculations of the voltages experienced by the TAT‐8 trans‐Atlantic submarine cable during the March 1989 magnetic storm. It is shown that the cable itself experiences an induced electromotive force (emf) and that induction in the ocean also leads to changes of potential of the land at each end of the cable. The process for calculating the electric fields induced in the sea and in the cable from knowledge of the seawater depth and conductivity and subsea conductivity is explained. The cable route is divided into 9 sections and the seafloor electric field is calculated for each section. These are combined to give the total induced emf in the cable. In addition, induction in the seawater and leakage of induced currents through the underlying resistive layers are modeled using a transmission line model of the ocean and underlying layers to determine the change in Earth potentials at the cable ends. The induced emf in the cable and the end potentials are then combined to give the total voltage change experienced by the cable power feed equipment. This gives results very close to those recorded on the TAT‐8 cable in March 1989. 
    more » « less
  8. Abstract Magnetopause reconnection is the dominant mechanism for transporting solar wind energy and momentum into the magnetosphere‐ionosphere system. Magnetopause reconnection can occur along X‐lines of variable extent in the direction perpendicular to the reconnection plane. Identifying the spatial extent of X‐lines using satellite observations has critical limitations. However, we can infer the azimuthal extent of the X‐lines by probing the ionospheric signature of reconnection, the antisunward flow channels across the ionospheric Open‐Closed Field Line Boundary (OCB). We study 39 dayside magnetopause reconnection events using conjugate in situ and ionospheric observations to investigate the variability and controlling factors of the spatial extent of reconnection. We use spacecraft data from Time History of Events and Macroscale Interactions during Substorms (THEMIS) to identify in situ reconnection events. The width of the antisunward flow channels across the OCB is measured using the concurrent measurements from Super Dual Auroral Radar Network (SuperDARN). Also, the X‐line lengths are estimated by tracing the magnetic field lines from the ionospheric flow boundaries to the magnetopause. The solar wind driving conditions upstream of the bow shock are studied using solar wind monitors located at the L1 point. Results show that the magnetopause reconnection X‐lines can extend from a few Earth Radii (RE) to at least 22 RE in the GSM‐Y direction. Furthermore, the magnetopause reconnection tends to be spatially limited during high solar wind speed conditions. 
    more » « less